The Energy Method for Elastic Problems with Non-homogeneous Boundary Conditions
نویسنده
چکیده
In this paper we propose the weighted energy method as a way to study estimates of solutions of boundary-value problems with non-homogeneous boundary conditions in elasticity. First, we use this method to study spatial decay estimates in twodimensional elasticity when we consider non-homogeneous boundary conditions on the boundary. Some comments in the case of harmonic vibrations are considered as well. We also extend the arguments to a class of three-dimensional problems in a cylinder. A section is devoted to the study of an ill-posed problem. Some remarks are presented in the last section of the paper.
منابع مشابه
Damped Vibrations of Parabolic Tapered Non-homogeneous Infinite Rectangular Plate Resting on Elastic Foundation (RESEARCH NOTE)
In the present paper damped vibrations of non-homogeneous infinite rectangular plate of parabolically varying thickness resting on elastic foundation has been studied. Following Lévy approach, the equation of motion of plate of varying thickness in one direction is solved by quintic spline method. The effect of damping, elastic foundation and taperness is discussed with permissible range of pa...
متن کاملModified Fixed Grid Finite Element Method in the Analysis of 2D Linear Elastic Problems
In this paper, a modification on the fixed grid finite element method is presented and used in the solution of 2D linear elastic problems. This method uses non-boundary-fitted meshes for the numerical solution of partial differential equations. Special techniques are required to apply boundary conditions on the intersection of domain boundaries and non-boundary-fitted elements. Hence, a new met...
متن کاملThird Order Formulation for Vibrating Non-Homogeneous Cylindrical Shells in Elastic Medium
Third order shear deformation theory of cylindrical shells is employed to investigate the vibration characteristics of non-homogeneous cylindrical shells surrounded by an elastic medium. The kinematic relations are obtained using the strain-displacement relations of Donnell shell theory. The shell properties are considered to be dependent on both position and thermal environment. A suitable fun...
متن کاملClamped-Free Non Homogeneous Magneto Electro Elastic Plate of Polygonal Cross-Sections with Hydrostatic Stress and Gravity
In this article, the influence of hydrostatic stress and gravity on a clamped- free non homogeneous magneto electro elastic plate of polygonal cross sections is studied using linear theory of elasticity. The equations of motion based on two-dimensional theory of elasticity are applied under the plane strain assumption of prestressed and gravitated magneto electro elastic plate of polygonal cros...
متن کاملModified Fixed Grid Finite Element Method in the Analysis of 2D Linear Elastic Problems
In this paper, a modification on the fixed grid finite element method is presented and used in the solution of 2D linear elastic problems. This method uses non-boundary-fitted meshes for the numerical solution of partial differential equations. Special techniques are required to apply boundary conditions on the intersection of domain boundaries and non-boundary-fitted elements. Hence, a new met...
متن کامل